

2

This small handbook is an effort
to describe in detail the Irdroid
project – an open source, open
hardware infrared remote control
for the Google’s Android
operating system. In the first
place I would like to thank my
wife who encouraged me and supported me in
writing this book. I would like to thank also Zokama
(http://www.zokama.com) who actually ported the
LIRC code for Android. Last but not least I would
like to thank the reader and those people who
purchased the Irdroid module, the Kit or this book.
Thank you!

For the convenience of the
reader, the links in this book are
available also as a QR barcodes.
The QR barcode can be scanned
via the barcode scanner of your
Android device. If you don’t
have a barcode scanner you
could download one from the Google’s Android
Market. The barcodes in this book will save you
typing in the links to your Android device.

©2012 irdroid.com 2012

INTRODUCTION 6

TOOLS AND SOFTWARE 7

LET’S START WITH THE HARDWARE: 10

OPERATION PRINCIPLE: 11
BUILDING THE IRDROID MODULE 14

INSTALLING ECLIPSE AND ADT PLUG-IN
FOR ECLIPSE 17

PREPARING YOUR DEVELOPMENT COMPUTER 18
DOWNLOADING THE ADT PLUG-IN 21

DOWNLOADING AND COMPILING THE
SOURCE. 23

CONFIGURATION OF THE ANDROID
VIRTUAL DEVICE EMULATOR (AVD) 28

- 4 -

CHANGING THE DEFAULT AVD SKIN 30

DOWNLOADING NEW PLATFORM SKINS: 31
IRDROID AVD SKINS LIBRARY 35
INSTALLING AVD SKINS. 36

RUNNING IRDROID 38

TESTING IRDROID ON THE EMULATOR 40

CUSTOMIZING IRDROID SOURCE CODE 41

THE “L IRC.JAVA” CLASS SOURCE CODE 41
THE “I CONIC” ACTIVITY SOURCE CODE 42
THE IRDROID ACTIVITY SOURCE CODE 44

GLOSSARY 63

TECHNICAL SPECIFICATIONS – IRDROID
V.1.0 64

- 5 -

IRDROID™ V.1.0 TECHNICAL DATA: 64
IRDROID™ V.1.0 MODULE APPS COMPATIBILITY:
 64
APP SPECIFICATIONS: 65

REFERENCES: 66

ABOUT THE AUTHOR 67

Customizing Irdroid

- 6 -

Introduction

Irdroid is an open source universal infrared remote
control for Android. The project comprises a
simple Android app and hardware module called
Irdroid v1.0 which makes it possible to control
various Infrared devices. The project uses code
from the well known LIRC (Linux Infrared
Remote Control) and from Zokama. The Irdroid
application is fully compatible with LIRC conf
files and can be downloaded from the official
Irdroid website as well as from the Android
Market.

This book will reveal the secrets of customizing the
Irdroid source code as well as a detailed
explanation of the tools used to design the Irdroid
hardware and software. You will learn how to
configure your development environment, how to
use GIT and compile / run your custom Irdroid app
on a fully functional Android Emulator for a PC /
MAC. You will also discover the operation
principle of the Irdroid v1.0 Hardware module.

Customizing Irdroid

- 7 -

Tools and Software

The Irdroid Development environment can be
practically setup for minutes. In the Basic setup
you will need to install the Android SDK, the latest
version of JRE and possibly Eclipse (If you intend
to use Eclipse as an IDE. Most of the Examples in
this handbook are with Eclipse running on
Windows XP, however Eclipse runs also on other
operating systems.

If you intend to change the ported LIRC library for
Irdroid then you will need to install also the
Android NDK (Native Development Kit).

This book will not detail the
installation of the Android
NDK or the Eclipse as these
are already available on the
Internet. You may have a look
at the following links on the
Internet in order to learn how
to configure your development environment
properly. The Android Software development kit
can be downloaded from:

Customizing Irdroid

- 8 -

http://developer.android.com/sdk/index.html ,

The link also contains step by
step information on how to
configure it. JRE – Java Runtime
Environment can be downloaded
from here:

http://www.java.com/en/download/index.jsp

Eclipse:

http://www.eclipse.org/helios/

Android NDK can be downloaded from this
website:
http://developer.android.com/sdk/ndk/index.html

At the end you will also need to
download and install the GIT
repository plug-in for Eclipse
from the Eclipse plug-in website.

Customizing Irdroid

- 9 -

After you install the above mentioned software kits
you are almost ready to start develop and test your
custom Irdroid app. If you don’t have an Irdroid
module yet, you may download the Irdroid module
schematics / PCB files from the Irdroid website
and make a DIY module.

You have also the option to purchase a kit or a
built and tested Irdroid module, if available (check
http://www.irdroid.com).

QR Code (alternate text – http://www.Irdroid.com)

Customizing Irdroid

- 10 -

Let’s start with the Hardware:

The module’s main task is to amplify the signal,
generated from the app and to provide an IR
interface to the relevant Android device. The active
amplification is necessary, because the output
signal from an Android device is not powerful
enough to light up IR LEDs, as well as to provide a
decent remote control range.

The module practically amplifies the generated
waveform from the app and emits IR Light via the
IR LEDs at 940nm wavelength. The input of the
module is provided by the Android Device 3.5mm
Audio jack.

The Left and The Right audio channels are used,
(GND) is not connected. The amplification is done
using an inexpensive LM386-M1 mono audio
amplifier which is configured for a gain of 200
times.

This configuration assures enough power @ 6V in
order to achieve a remote control distance of about
10 meters.

Customizing Irdroid

- 11 -

Operation principle:

The Irdroid schematic is shown on figure 1. The
Audio Signal, generated from the app is amplified
via the LM-386-M1 Audio Amplifier and it is fed
to the IR LEDs. Then the signal is emitted via the
IR LEDs at 940nm.

Figure 1 - Irdroid 1.0 schematic

The Irdroid app is responsible for generating a
19kHz audio tone. The infared data is modulated

Customizing Irdroid

- 12 -

on the 19kHz sine wave. The signal is amplified
via the LM386 audio amplifier and rectified via the
two IR leds, doubling the frequency to 38kHz
(Figure 2). The first IR led rectifies the positive
halfwave of the audio signal and the second IR led
the negative halfwave of the signal.

The LM386 mono audio amplifier is configured to
amplify the signal 200 times so that the radiated IR
light power is enought to achieve a remote control
distance of about 10 meters.

 Figure 2. The Audio signal before and after

rectification

The top wave shows how the signal comes from
the Android device soundcard. The second is how

Customizing Irdroid

- 13 -

it looks like after amplification and rectification.
As you can see, the singal frequency is doubled.

Figure 3. – Irdroid v 1.0 pcb

D1 and D2 from figure 3 are the two IR LEDs, U1
is the amplifier IR – LM386-M1, and the other
components are capacitors and resistors detailed in
the schematic.

Most of the components are SMD (surface mount)
only the Jumper, the two IR Leds, the Battery
Holder and the audio jack are coventional parts.
The download section at http://www.irdroid.com
contains a zip archive of the schematics and the
production files of the module.

You could use the schematics and the production
files to produce boards using your favourite printed

Customizing Irdroid

- 14 -

circuit board manufacturer. In most of the
companies offering pcb manufacturing service you
will find out that they could also solder the SMD
components for you, as well as to build complete
modules.
There are some online services for pcb
manufacturing / production. Consider using Google
to find out which is the best for you.

I personally use Vprint-pcb and Olimex for the pcb
manufacturing as these companies offer low cost
service and a great quality.

 Some suggestions for PCB Manufacturing:

o Olimex LTD – http://www.olimex.com
o Custompcb –

http://www.custompcb.com
o Futurlec – http://www.futurlec.com

Building the Irdroid module

Building the Irdroid module will require at least
rudimentary soldering skills, soldering iron and
willingness to experiment. To produce Irdroid

Customizing Irdroid

- 15 -

board / boards you could use the production files
available at the Irdroid website and make an
enquiry about your favorite pcb manufacturing
company. You could also check the Irdroid
website for module availability. The modules
available through the Irdroid website are as
follows:

Irdroid Kit.

The Irdroid KIT is a development kit suitable for
people who want to make the DIY module. The kit
includes an Irdroid v1.0 PCB with soldered SMD
components, a battery holder, a jumper, 2 IR LEDS
and a 3.5mm Audio jack.

Customizing Irdroid

- 16 -

Irdroid PCB with soldered SMD components:

The Irdroid kit includes a pcb with soldered SMD
components, 2 IR LEDS and a jumper. This kit is
for those of you who intend to use another power
supply (not the standard battery) or just want to
experiment with the Irdroid.

Irdroid PCB

The Irdroid PCB without components (PCB only)

Customizing Irdroid

- 17 -

Installing Eclipse and ADT plug-in for
Eclipse

If you will be developing in Eclipse with the Android
Development Tools (ADT) Plug-in—the
recommended path if you are new to Android—make
sure that you have a suitable version of Eclipse
installed on your computer.

If you need to install Eclipse, you can download it
from this location:

http://www.eclipse.org/downloads/

The "Eclipse Classic" version is recommended.
Otherwise, a Java or RCP version of Eclipse is
recommended.

Android Development Tools (ADT) is a plug-in for
the Eclipse IDE that is designed to give you a
powerful, integrated environment in which to build
Android applications.

ADT extends the capabilities of Eclipse to let you
quickly set up new Android projects, create an

Customizing Irdroid

- 18 -

application UI, add components based on the
Android Framework API, debug your applications
using the Android SDK tools and even export signed
(or unsigned) .apk files in order to distribute your
application.

Developing in Eclipse with ADT is highly
recommended and is the fastest way to get started.
With the guided project setup it provides, as well as
tools integration, custom XML editors, and debug
output pane, ADT gives you an incredible boost in
developing Android applications.

Preparing Your Development Computer

The SDK starter package is not a full development
environment—it includes only the core SDK Tools,
which you can use to download the rest of the SDK
components (such as the latest Android platform).
If you do not have it already, get the latest version of
the SDK starter package. Get it from:

http://developer.Android.com/sdk/index.html .

If you downloaded a .zip or .tgz package (instead of
the SDK installer), unpack it to a safe location on

Customizing Irdroid

- 19 -

your machine. By default, the SDK files are
unpacked into a directory named Android-sdk-
<machine-platform>.
If you downloaded the Windows installer (.exe file),
run it now and it will check whether the proper Java
SE Development Kit (JDK) is installed (installing it,
if necessary), then install the SDK Tools into a
default location (which you can modify).

Make a note of the name and location of the SDK
directory on your system—you will need to refer to
the SDK directory later, when setting up the ADT
plug-in and when using the SDK tools from the
command line.

ADT is a plug-in for the Eclipse IDE. Before you can
install or use ADT, you must have a compatible
version of Eclipse installed on your development
computer. If Eclipse is already installed on your
computer, make sure that it is a version that is
compatible with ADT and the Android SDK.

• If you need to install or
update Eclipse, you can
download it from this location:

Customizing Irdroid

- 20 -

http://www.eclipse.org/downloads/

The "Eclipse Classic" version is recommended.
Otherwise, a Java or RCP version of Eclipse is
recommended.

Additionally, before you can configure or use ADT,
you must install the Android SDK starter package, as
described in:

http://developer.Android.com/sdk/installing.html#Ins
talling

 Specifically, you need to install a compatible version
of the Android SDK Tools and at least one
development platform. To simplify ADT setup, we
recommend installing the Android SDK prior to
installing ADT.

When your Eclipse and Android SDK environments
are ready, continue with the ADT installation as
described in the steps below.

Customizing Irdroid

- 21 -

Downloading the ADT Plug-in

Use the Update Manager feature of your Eclipse
installation to install the latest revision of ADT on
your development computer.

1. Start Eclipse, then select Help > Install New
Software....

2. Click Add, in the top-right corner.
3. In the Add Repository dialog that appears, enter

"ADT Plugin" for the Name and the following
URL for the Location:

https://dl-ssl.google.com/Android/eclipse/

4. Click OK

Note: If you have trouble acquiring the plug-in, try
using "http" in the Location URL, instead of
"https" (https is preferred for security reasons).

5. In the Available Software dialog, select the
checkbox next to Developer Tools and click Next.
6. In the next window, you'll see a list of the tools
to be downloaded. Click Next.

Customizing Irdroid

- 22 -

7. Read and accept the license agreements, then
click Finish.

Note: If you get a security warning saying that the
authenticity or validity of the software can't be
established, click OK .

8. When the installation is complete, restart
Eclipse.

Customizing Irdroid

- 23 -

Downloading and compiling the source.

The Irdroid source code is available for download
at http://www.github.com/Irdroid

Here you can find out how to import the source
code in your development environment using
Eclipse and the GIT plug-in for Eclipse.

Start Eclipse and select file - > import

Afterwards select the “Import projects from GIT”

Customizing Irdroid

- 24 -

Click “Clone”

Enter the Following “URI” and click next.

Customizing Irdroid

- 25 -

After you click next and select the default options,
the project import process will start and the Irdroid
source code will be imported in your development
environment.

At this point if your development environment is
configured properly, you should be able to compile
the source.

Customizing Irdroid

- 26 -

The Irdroid project consists of two Android
activities, one class and 1 native Android library.

Activities:

o The main activity – Irdroid
o The Update Database Activity – Iconic

 Classes:

Customizing Irdroid

- 27 -

o The Lirc.java calls to libIrdroid.so (the
port of LIRC)

If your development environment is configured
correctly you can build the project by clicking
Project - > Build

After a successful compilation you should be able
to run the project on the emulator that comes with
the Android Software Development Kit. But first
you need to define the new AVD (Android Virtual
Device).

Customizing Irdroid

- 28 -

Configuration of the Android virtual
device emulator (AVD)

To play with the emulator, first you need to do
some configurations according to your particular
requirements. This includes the target Android
platform version that you want to emulate, the size
of the emulated storage (the SDCARD), the size of
the screen etc. To start the AVD configuration
manager, click “window-> Android SDK and AVD
manager”.

Configure a new AVD according to your needs by
clicking “New”. You will be able to select the new
AVD parameters like name, storage size, Android
version and screen details.

Customizing Irdroid

- 29 -

The “Create new Android Virtual Device” dialog
provides you with the options to select the platform
version to be emulated, the storage size, as well as
the skin that you want to use.

The next chapter deals separately with
downloading and installing skins for the Android
emulator AVD.

Customizing Irdroid

- 30 -

Changing the default AVD Skin

Any Android developer knows
that the default Google’s
Android emulator comes with a
set of loveless default looks.

Fortunately there are skins
available on the Internet which
and that changes the whole
picture. You could download a
set of fabulous Nexus skins for
the Android emulator from:

These skins are really fabulous with a cool glow
effect and will make you feel like you develop / run
your apps on a real Android Device.

The skin for the emulator is a folder with graphics.
This folder has to be copied in the target platform
skins folder of your Android SDK. Due to the fact
that some of the skins are high resolution you may
need to use the scale option in the Android AVD
properties in order to adjust the size of the emulator
display.

Customizing Irdroid

- 31 -

Downloading new platform skins:

The Google Nexus skins described
below can be downloaded from the
URL below or scan the barcode on
right:

http://heikobehrens.net/2011/03/15/Android-skins/
The package contains four different themes including
overlays for a glare effect.

Skins in the package:

o Nexus – ONE
o Nexus – ONE – Black
o Nexus – ONE – Silver
o Nexus – S

Customizing Irdroid

- 32 -

Nexus One Screenshots:

Customizing Irdroid

- 33 -

HTC-Hero Skin

The HTC Hero skin looks just
like the real device. You could
download it from:

http://impressive-artworx.de/2011/htc-
hero-emulator-skin/

Screenshots:

Customizing Irdroid

- 34 -

HTC Touch HD Skin

The HTC Touch HD
Smartphone is with a WVGA
Display and a resolution of
480x800 pixels

http://www.Android.encke.net/Android-emulator-htc-touchhd-
portrait.html

Customizing Irdroid

- 35 -

Irdroid AVD skins library

You could download our skin’s
library collection which contains
the skins presented above as well
as some other skins of the most
popular Android Devices.

Visit
http://www.Irdroid.com/skins/library.zip in order to
download our skins library for the Android AVD.

Customizing Irdroid

- 36 -

Installing AVD skins.

The skins for the Android AVD are folders with
Graphics. The installation of the skins is actually
quite a simple process. You need to download a skin
and decompress the archive. Identify the location of
your Android SDK and copy the skin folder to your
Android SDK platform folder eg:

C:\Android\sdk_r07\Android-sdk-
windows\platforms\Android-7\skins

In this case your new skins will be extracted for the
Android 7 platform. To setup a new AVD with your
newly installed skin you need to start Eclipse, click
on “windows” and select “Android SDK and AVD
Manager” from the list.

Customizing Irdroid

- 37 -

Click “New”
The AVD manager
will allow you to
select your newly
installed skin as
well as parameters
like name of the
new AVD device,
SDCARD size in
MB, skin for the
new AVD.

In the example on
the right the
NEXUS-ONE skin
is selected. You
could also change / add additional hardware
features for your new AVD. After you are done
with your settings, you should click on “Create
AVD” in order to save the settings and to create
your new AVD device.

Customizing Irdroid

- 38 -

Running Irdroid

Starting the Irdroid app for a first time from
Eclipse will require defining a run configuration.

Select the Project (Irdroid) and then Click on
“Launch” radio button and select the Irdroid
Default activity (Irdroid). Afterwards you can click
“Run” and start the emulator and the App.

Be patient, the emulator needs some time to start
up.

Customizing Irdroid

- 39 -

At the end the result should look like this:

…and if you have installed
your custom Android skin
should look something like the
image on the right ->

The App User Interface is very
simple. The six buttons are for
some basic IR remote
functions like Volume, Power,
Mute, Channel+ and Channel-.
The Remote control device can
be selected from the list of
available devices from the first

Customizing Irdroid

- 40 -

drop-down, the second shows the selected device
commands.

Testing Irdroid on the Emulator
It is possible to actually make a physical Irdroid test
with the Irdroid app, an Irdroid module connected to
your PC. Start your AVD and run the Irdroid app on
it. Plug the Irdroid module in your computer phone’s
3.5mm audio jack and set the volume level to ½ or ¼.
Tap menu->update DB in the AVD in order to update
the default list of IR devices. Afterward you can play
with the app / your TV set.

Customizing Irdroid

- 41 -

Customizing Irdroid source code

As we already mentioned before, the Irdroid
application consist of 2 Android activities one java
class and the LIRC ported for Android (used as a
native library).

The “Lirc.java” class source code

Let’s start with the class called “Lirc.java”

package com.microcontrollerbg.Irdroid;

import java.io.File;

public class Lirc {

public static String POWER_TOGGLE = "Function18" ;

static {
 System. loadLibrary ("Irdroid");
 }

native int parse(String filename);

native byte[] getIrBuffer(String irDevice, String irCode);

native String[] getDeviceList();

native String[] getCommandList(String irDevice);

 Lirc (){

File dir = new File("/mnt/sdcard/log");
 dir.mkdirs();

Customizing Irdroid

- 42 -

 }

}

Normally this class loads the LIRC native library
called “Irdroid” and you should not change
anything here.

The “Iconic” Activity source code

The “Iconic” Activity task is to connect to the
Irdroid website, download the default conf file, and
load it in the Irdroid application.

package com.microcontrollerbg .Irdroid ;
import java .io .BufferedInputStream ;
import java .io .File ;
import java .io .FileOutputStream ;
import java .io .InputStream ;
import java .net .URL;
import java .net .URLConnection ;
import org .apache .http .util .ByteArrayBuffer ;
import Android .app.*;
import Android .content .Intent ;
import Android .os.*;
import Android .widget .Toast ;

public class Iconic extends Activity {

private Handler mHandler ;
Intent intent ;
private final String fileName = "/sdcard/tmp/t.conf" ;

public void onCreate (Bundle savedInstanceState) {

super .onCreate (savedInstanceState);

Customizing Irdroid

- 43 -

intent = getIntent ();

mHandler = new Handler ();
checkUpdate .start ();
}

private Thread checkUpdate = new Thread () {
public void run () {
try {

File file = new File (fileName);
if (file .exists ()) {
file .delete();
}

URL updateURL = new
URL("http://www.Irdroid.com/db/t.conf");
URLConnection conn = updateURL .openConnection ();
InputStream is = conn .getInputStream ();
BufferedInputStream bis = new BufferedInputStream (is);
ByteArrayBuffer baf = new ByteArrayBuffer (50);

int current = 0;
while ((current = bis .read ()) != -1) {
baf .append ((byte) current);
}

File tmpdir = new File ("/sdcard/tmp/");

if (!tmpdir .exists ()) {

tmpdir .mkdirs ();
}

FileOutputStream fos = new FileOutputStream (file);
fos .write (baf .toByteArray ());

fos .close ();
setResult (RESULT_OK, intent);
finish ();
mHandler .post (showUpdate);

} catch (Exception e) {

}
}
};

Customizing Irdroid

- 44 -

private Runnable showUpdate = new Runnable () {
public void run () {
Toast .makeText (Iconic .this, "Success!" ,
Toast .LENGTH_SHORT).show();
 }
};

The Irdroid Activity source code

The main Irdroid Activity task is to
“communicate” with the shared library
libIrdroid.so which actually reads the LIRC conf
files and provides an interface to the LIRC files.

package com.microcontrollerbg .Irdroid ;
import java .io .FileInputStream ;
import java .io .FileOutputStream ;
import Android .app.Activity ;
import Android .app.AlertDialog ;
import Android .app.Dialog ;
import Android .app.AlertDialog .Builder ;
import Android .content .Context ;
import Android .content .DialogInterface ;
import Android .content .Intent ;
import Android .content .SharedPreferences ;
import Android .media .AudioFormat ;
import Android .media .AudioManager ;
import Android .media .AudioTrack ;
import Android .os.Bundle ;
import Android .os.Handler ;
import Android .os.SystemClock ;
import Android .os.Vibrator ;
import Android .text .method .LinkMovementMethod ;
import Android .util .Log;
import Android .view .KeyEvent ;
import Android .view .Menu;
import Android .view .MenuItem ;
import Android .view .MotionEvent ;

Customizing Irdroid

- 45 -

import Android .view .View ;
import Android .view .View .OnTouchListener ;
import Android .widget .AdapterView ;
import Android .widget .ArrayAdapter ;
import Android .widget .Button ;
import Android .widget .EditText ;

import Android .widget .Spinner ;
import Android .widget .TextView ;
import Android .widget .Toast ;

/**
 * @author irdroid.com
 *
 */

public class Irdroid extends Activity {
public int number = 0;
byte buffer [];
protected String com;
protected String dev ;
SharedPreferences mPrefs ;
private AudioManager audio ;
public AudioTrack ir ;

public int bufSize = AudioTrack .getMinBufferSize (48000 ,

AudioFormat .CHANNEL_CONFIGURATION_STEREO,
AudioFormat .ENCODING_PCM_8BIT);

private final static String LIRCD_CONF_FILE =
"/sdcard/tmp/t.conf" ;

private Handler mHandler = new Handler ();
public String mycmd;

// global variables
TextView tv ;
Lirc lirc ;
ArrayAdapter <String > deviceList ;
ArrayAdapter <String > commandList ;
private Vibrator myVib ;
public String gdevice ;

private Runnable voldown = new Runnable () {
public void run () {

Customizing Irdroid

- 46 -

ir .release ();

String coolcmd = "VOL-" ;

myVib .vibrate (50);
try {

sendSignal (gdevice , coolcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .postAtTime (this, SystemClock .uptimeMillis () +
250);
}
};
private Runnable volup = new Runnable () {
public void run () {

ir .release ();

String coolcmd = "VOL+" ;

myVib .vibrate (50);

try {

sendSignal (gdevice , coolcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .postAtTime (this, SystemClock .uptimeMillis () +
250);

}
};

private Runnable next = new Runnable () {
public void run () {

ir .release ();

Customizing Irdroid

- 47 -

String coolcmd = "P+" ;

myVib .vibrate (50);

try {

sendSignal (gdevice , coolcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .postAtTime (this, SystemClock .uptimeMillis () +
250);

}
};
private Runnable prev = new Runnable () {
public void run () {

ir .release ();

String coolcmd = "P+" ;

myVib .vibrate (50);

try {

sendSignal (gdevice , coolcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .postAtTime (this, SystemClock .uptimeMillis () +
250);

}
};

public void onCreate (Bundle savedInstanceState) {

audio = (AudioManager)
getSystemService (Context .AUDIO_SERVICE);

Customizing Irdroid

- 48 -

int currentVolume =
audio .getStreamMaxVolume (AudioManager .STREAM_MUSIC);
audio .setStreamVolume (AudioManager .STREAM_MUSIC,
currentVolume / 2, 0);
audio = (AudioManager)
getSystemService (Context .AUDIO_SERVICE);
super .onCreate (savedInstanceState);

firstRunPreferences ();
if (getFirstRun ()) {
About ();
setRunned ();

}
setContentView (R.layout .apple);
Button apple_volup = (Button)
findViewById (R.id .apple_volup);
Button apple_voldn = (Button)
findViewById (R.id .apple_voldn);
Button apple_menu = (Button) findViewById (R.id .apple_menu);
Button apple_next = (Button) findViewById (R.id .apple_next);
Button apple_prev = (Button) findViewById (R.id .apple_prev);
Button apple_play = (Button) findViewById (R.id .apple_play);
final Spinner spinDevice = (Spinner)
findViewById (R.id .Spinner01);
final Spinner spinCommand = (Spinner)
findViewById (R.id .Spinner02);
lirc = new Lirc ();

myVib = (Vibrator) this.getSystemService (VIBRATOR_SERVICE);

// Initialize adapter for device spinner
deviceList = new ArrayAdapter <String >(this,
Android .R.layout .simple_spinner_item);
deviceList
.setDropDownViewResource (Android .R.layout .simple_spinner_dr
opdown_item);

spinDevice .setPrompt ("Select a device");
spinDevice .setAdapter (deviceList);

// Command adapter
commandList = new ArrayAdapter <String >(this,
Android .R.layout .simple_spinner_item);
commandList

Customizing Irdroid

- 49 -

.setDropDownViewResource (Android .R.layout .simple_spinner_dr
opdown_item);

// Parse configuration file and update device adapt er
parse (LIRCD_CONF_FILE);

spinDevice
.setOnItemSelectedListener (new
Spinner .OnItemSelectedListener () {
public void onItemSelected (AdapterView <?> parent ,
View view , int pos , long id) {
String [] str = lirc .getCommandList (spinDevice
.getSelectedItem ().toString ());
commandList .clear ();
gdevice = spinDevice .getSelectedItem ().toString ();
for (int i = 0; i < str .length ; i ++) {
commandList .add(str [i]);
}

}

@Override
public void onNothingSelected (AdapterView <?> arg0) {
}
});

spinCommand.setPrompt ("Select a command");
spinCommand.setAdapter (commandList);

spinCommand
.setOnItemSelectedListener (new
Spinner .OnItemSelectedListener () {

@Override
public void onItemSelected (AdapterView <?> parent ,
View view , int pos , long id) {

String device = spinDevice .getSelectedItem ().toString ();
mycmd = spinCommand.getSelectedItem ().toString ();
if (ir != null) {
try {
sendSignal (device , mycmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block

Customizing Irdroid

- 50 -

e.printStackTrace ();
}
}
}

@Override
public void onNothingSelected (AdapterView <?> arg0) {
// TODO Auto-generated method stub

}

});
apple_voldn .setOnTouchListener (new OnTouchListener () {
public boolean onTouch (View view , MotionEvent motionevent)

{
int action = motionevent .getAction ();

if (action == MotionEvent .ACTION_DOWN) {

if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();

return true;
}
myVib .vibrate (50);

String mycmd = "VOL-" ;

try {

sendSignal (gdevice , mycmd);
// Log.i("repeatBtn", "MotionEvent.ACTION_DOWN");
// mHandler.removeCallbacks(mUpdateTask);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}

mHandler .postAtTime (voldown ,
SystemClock .uptimeMillis () + 250);
}

Customizing Irdroid

- 51 -

else if (action == MotionEvent .ACTION_UP) {
// Log.i("repeatBtn", "MotionEvent.ACTION_UP");\
try {
Thread .sleep (180);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .removeCallbacks (voldown);

}
return false;
}

});

apple_next .setOnTouchListener (new OnTouchListener () {
public boolean onTouch (View view , MotionEvent motionevent)
{
int action = motionevent .getAction ();
if (action == MotionEvent .ACTION_DOWN) {
if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();
return true;
}
myVib .vibrate (50);

String gcmd = "P+" ;

try {
sendSignal (gdevice , gcmd);
Log.i ("repeatBtn" , "MotionEvent.ACTION_DOWN");
// mHandler.removeCallbacks(mUpdateTask);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block

Customizing Irdroid

- 52 -

e.printStackTrace ();
}

// mHandler.removeCallbacks(mUpdateTask);

mHandler .postAtTime (next , SystemClock .uptimeMillis () +
250);

} else if (action == MotionEvent .ACTION_UP) {

try {
Thread .sleep (150);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .removeCallbacks (next);

}
return false;
}
});

apple_prev .setOnTouchListener (new OnTouchListener () {
public boolean onTouch (View view , MotionEvent motionevent)
{
int action = motionevent .getAction ();
if (action == MotionEvent .ACTION_DOWN) {
if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();
return true;
}
myVib .vibrate (50);

String gcmd = "P-" ;

try {

Customizing Irdroid

- 53 -

sendSignal (gdevice , gcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}

mHandler .postAtTime (prev , SystemClock .uptimeMillis () +
250);

} else if (action == MotionEvent .ACTION_UP) {

try {
Thread .sleep (150);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .removeCallbacks (prev);

}
return false;
}
});

apple_menu .setOnTouchListener (new OnTouchListener () {
public boolean onTouch (View view , MotionEvent motionevent)
{
int action = motionevent .getAction ();
if (action == MotionEvent .ACTION_DOWN) {
if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();
return true;
}
myVib .vibrate (50);

String gcmd = "MUTE";

Customizing Irdroid

- 54 -

try {
sendSignal (gdevice , gcmd);

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}

} else if (action == MotionEvent .ACTION_UP) {
try {
Thread .sleep (150);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}

}
return false;
}
});
apple_play .setOnTouchListener (new OnTouchListener () {
public boolean onTouch (View view , MotionEvent motionevent)
{
int action = motionevent .getAction ();
if (action == MotionEvent .ACTION_DOWN) {
if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();
return true;
}
myVib .vibrate (50);
// String cmd=null;
String gcmd = "POWER";

try {
sendSignal (gdevice , gcmd);

Customizing Irdroid

- 55 -

} catch (IllegalStateException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}

Log.i ("repeatBtn" , "MotionEvent.ACTION_DOWN");

} else if (action == MotionEvent .ACTION_UP) {

try {
Thread .sleep (150);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {

e.printStackTrace ();
}

}
return false;

}
});
apple_volup .setOnTouchListener (new OnTouchListener () {

public boolean onTouch (View view , MotionEvent motionevent)
{
int action = motionevent .getAction ();

if (action == MotionEvent .ACTION_DOWN) {

if (spinDevice .getSelectedItem () == null
|| spinCommand.getSelectedItem () == null) {
Toast .makeText (getApplicationContext (),
"Please select a device and a command" ,
Toast .LENGTH_SHORT).show();
return true;
}
myVib .vibrate (50);

String mycmd = "VOL+" ;

Customizing Irdroid

- 56 -

try {
sendSignal (gdevice , mycmd);

} catch (IllegalStateException e) {

e.printStackTrace ();
}

mHandler .postAtTime (volup , SystemClock .uptimeMillis () +
250);

} else if (action == MotionEvent .ACTION_UP) {
// Log.i("repeatBtn", "MotionEvent.ACTION_UP");\
try {
Thread .sleep (150);
if (ir != null) {
ir .flush ();
ir .release ();

}
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace ();
}
mHandler .removeCallbacks (volup);

}
return false;

}

});
}

public String selectFile () {

final EditText ed = new EditText (this);

Builder builder = new Builder (this);
builder .setTitle ("Select a file to parse");
builder .setView (ed);
builder .setPositiveButton ("Save" ,
new DialogInterface .OnClickListener () {
public void onClick (DialogInterface dialog , int which) {
if (which == Dialog .BUTTON_NEGATIVE) {

Customizing Irdroid

- 57 -

dialog .dismiss ();
return;
}
parse (ed.getText ().toString ());
}
});
builder .setNegativeButton ("OK" , null);
final AlertDialog asDialog = builder .create ();
asDialog .show();
return null ;

}

 public String About () {
 AlertDialog .Builder about = new
AlertDialog .Builder (this);
 about .setTitle (R.string .app_name)
 // .setIcon(R.drawable.dialog_icon)
 .setMessage (R.string .info)
 .setCancelable (true)
 .setNegativeButton ("Dismiss" ,
 new
DialogInterface .OnClickListener () {

public void onClick (DialogInterface
dialog , int id) {
 dialog .dismiss ();
 }
 });

 AlertDialog welcomeAlert = about .create ();
 welcomeAlert .show();
 ((TextView)
welcomeAlert .findViewById (Android .R.id .message))

.setMovementMethod (LinkMovementMethod .getInstance ());
 return null ;

 }

public boolean parse (String config_file) {

java .io .File file = new java .io .File (config_file);

if (!file .exists ()) {
if (config_file != LIRCD_CONF_FILE)

Customizing Irdroid

- 58 -

Toast .makeText (getApplicationContext (),
"The Selected file doesn't exist" , Toast .LENGTH_SHORT)
.show();
else
Toast .makeText (getApplicationContext (),
"Configuartion file missing, please update the db" ,
Toast .LENGTH_SHORT).show();
// selectFile();
return false;
}

if (lirc .parse (config_file) == 0) {
Toast .makeText (getApplicationContext (),
"Couldn't parse the selected file" , Toast .LENGTH_SHORT)
.show();
// selectFile();
return false;
}

// Save the file since it has been parsed successfu lly
if (config_file != LIRCD_CONF_FILE) {
try {
FileInputStream in = new FileInputStream (config_file);
FileOutputStream out = new
FileOutputStream (LIRCD_CONF_FILE);
byte [] buf = new byte [1024];
int i = 0;
while ((i = in .read (buf)) != -1) {
out .write (buf , 0, i);
}
in .close ();
out .close ();
} catch (Exception e) {
tv .append ("Probleme saving configuration file: "
+ e.getMessage ());
}
}

updateDeviceList ();
return true;
}

public void updateDeviceList () {
String [] str = lirc .getDeviceList ();

Customizing Irdroid

- 59 -

if (str == null) {
Toast .makeText (getApplicationContext (),
"Invalid, empty or missing config file" ,
Toast .LENGTH_SHORT)
.show();
// selectFile();
return;
}

deviceList .clear ();
for (int i = 0; i < str .length ; i ++) {
Log.e("ANDRPOLIRC",
String .valueOf (i) + "/" + String .valueOf (str .length) + ": "
+ str [i]);
deviceList .add(str [i]);
}

}

void sendSignal (String device , String cmd) {

buffer = lirc .getIrBuffer (device , cmd);

if (buffer == null) {
Toast .makeText (getApplicationContext (), "Empty Buffer!" ,
Toast .LENGTH_SHORT).show();
return;
}
ir = new AudioTrack (AudioManager .STREAM_MUSIC, 48000 ,
AudioFormat .CHANNEL_CONFIGURATION_STEREO,
AudioFormat .ENCODING_PCM_8BIT, bufSize ,
AudioTrack .MODE_STATIC);

if (bufSize < buffer .length)
bufSize = buffer .length ;
ir .write (buffer , 0, buffer .length);
ir .setStereoVolume (1, 1);

ir .play ();
}

void deleteConfigFile () {
java .io .File file = new java .io .File (LIRCD_CONF_FILE);
if (!file .exists ())
Toast .makeText (getApplicationContext (),

Customizing Irdroid

- 60 -

"Configuartion file missing\n" + "No file to delete" ,
Toast .LENGTH_SHORT).show();
else if (file .delete()) {
Toast .makeText (getApplicationContext (),
"File deleted successfully" , Toast .LENGTH_SHORT).show();
deviceList .clear ();
commandList .clear ();

} else
Toast .makeText (getApplicationContext (), "Couldn't delete
the file" ,
Toast .LENGTH_SHORT).show();
}

public boolean onCreateOptionsMenu (Menu menu) {
menu.add(0, 0, 0, "Parse file").setIcon (
Android .R.drawable .ic_menu_upload);
menu.add(0, 1, 0, "Clear conf").setIcon (
Android .R.drawable .ic_menu_delete);
menu.add(0, 2, 0, "Update
db").setIcon (Android .R.drawable .ic_input_add);
menu.add(0, 3, 0,
"Send").setIcon (Android .R.drawable .arrow_up_float);
menu.add(0, 4, 0,
"About").setIcon (Android .R.drawable .ic_menu_help);
return true;
}

protected void onActivityResult (int requestCode , int
resultCode , Intent data) {
super .onActivityResult (requestCode , resultCode , data);
if (resultCode == RESULT_OK && requestCode == 1) {

parse (LIRCD_CONF_FILE);
updateDeviceList ();
}
}

/**
*
* get if this is the first run
*
*
*
* @return returns true, if this is the first run

Customizing Irdroid

- 61 -

*/

public boolean getFirstRun () {

return mPrefs .getBoolean ("firstRun" , true);

}

/**
*
* store the first run
*/

public void setRunned () {

SharedPreferences .Editor edit = mPrefs .edit ();

edit .putBoolean ("firstRun" , false);

edit .commit ();

}

public boolean onKeyDown(int keyCode , KeyEvent event) {
switch (keyCode) {
case KeyEvent .KEYCODE_VOLUME_UP:
audio .adjustStreamVolume (AudioManager .STREAM_MUSIC,
AudioManager .ADJUST_RAISE, AudioManager .FLAG_SHOW_UI);
return true;
case KeyEvent .KEYCODE_VOLUME_DOWN:
audio .adjustStreamVolume (AudioManager .STREAM_MUSIC,
AudioManager .ADJUST_LOWER, AudioManager .FLAG_SHOW_UI);
return true;

default:
super .onKeyDown(keyCode , event);
return false;
}
}

/**
*
* setting up preferences storage
*/

Customizing Irdroid

- 62 -

public void firstRunPreferences () {

Context mContext = this.getApplicationContext ();

mPrefs = mContext .getSharedPreferences ("myAppPrefs" , 0); //
0 = mode
}

public boolean onOptionsItemSelected (MenuItem item) {
switch (item .getItemId ()) {
case 0:
selectFile ();
break;
case 1:
deleteConfigFile ();
break;
case 2:
Intent myIntent = new Intent (Irdroid .this, Iconic .class);
startActivityForResult (myIntent , 1);
break;
case 3:
try {

sendSignal (gdevice , mycmd);

} catch (IllegalStateException e) {

e.printStackTrace ();
}
break;
case 4:

About ();
break;
}
return false;
}
}

Customizing Irdroid

- 63 -

Glossary

ADT- Android Development tools

Android Activity – A single focused thing that the user can do.

Android AVD – Android Virtual Device emulator

Android NDK – Google’s Android native development kit

Android SDK – Google’s Android software development kit

DIY – Do-It-Yourself

Eclipse – IDE (Integrated Development Environment)

GIT – Fast version control system

IDE – Integrate Development Environment

IR – infrared

JAVA – Programming Language

JRE – Java runtime environment

LED – Light emitting diode

LIRC – Linux infrared remote control

PCB – printed circuit board

QR Barcode – Quick response code

SDCARD – Secure Digital Memory card

SMD – Surface mount device / surface mount technology

URI – Uniform resource identifier

XML – Extensible Markup Language

Customizing Irdroid

- 64 -

Technical Specifications – Irdroid v.1.0

Irdroid™ v.1.0 Technical Data:

o Operating range > 10 Meters
o IR LED Wavelength – 940 nm
o Hardware Interface Stereo jack 3.5mm
o Amplifier IC – LM386-M1
o Battery type – 4LR44/6V
o Dimensions 43,2x17mm
o Board Thickness – 1mm double layer
o Packing – Carton Box size 60x60x30mm
o Jumper switch for saving power when not in use

Irdroid™ v.1.0 module apps compatibility:

� Irdroid™ – The official Irdroid™ app
� Androlirc – A port of LIRC for Android

Customizing Irdroid

- 65 -

� PhotoIrMote

App Specifications:

� Supports Android version 1.6 and above
� Dynamic Layout generation
� Supports LIRC configuration files
� Supports vibration on button press (Heptic feedback)
� A full list of the supported remotes can be found here

http://lirc.sourceforge.net/remotes/ .
� Plug and play Design (The user plugs the hardware

module and it works)

Customizing Irdroid

- 66 -

References:

http://www.irdroid.com – The official Irdroid website
http://www.zokama.com – The Androlirc Application
http://lirc.sf.net – The official LIRC website
http://developer.android.com – Android SDK how-to’s
http://www.eclipse.com – The Eclipse IDE website
http://www.github.com/irdroid - Irdroid’s GIT repository

Customizing Irdroid

- 67 -

About the Author

Irdroid.com - www.irdroid.com

